LM3673 Evaluation Board

National Semiconductor Application Note 1465 Jose Escobar October 10, 2008

Introduction

The LM3673 evaluation board is a working demonstration of a step down DC-DC converter. This application note contains information about the evaluation board. For further information on buck converter topology, device electrical characteristics, and component selection please refer to the datasheet.

General Description

The LM3673, a high efficient step down DC-DC switching buck converter, steps down a constant voltage for cell phones, PDA's, and many other applications from a single Li-

ion battery ranging from 2.7V to 5.5V. The automatic intelligent switching between PFM and PWM provides high efficiency throughout the lout range. The LM3673 is available in both fixed and adjustable output voltages options ranging from 1.1V to 3.3V in a 5-bump micro SMD package.

Operating Conditions

- V_{IN} range: 2.7V $\leq V_{IN} \leq 5.5V$
- Recommended load current: 0 mA ≤ I_{OUT} ≤ 350mA
- Ambient temperature (T_A) range: -30C to +85C
- Junction temperature (T_J) range: -30C to +125C

Typical Application

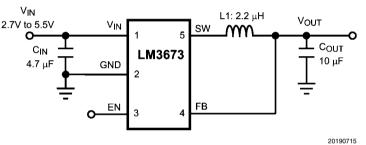


FIGURE 1. Typical Application Circuit: Fixed Voltage Option

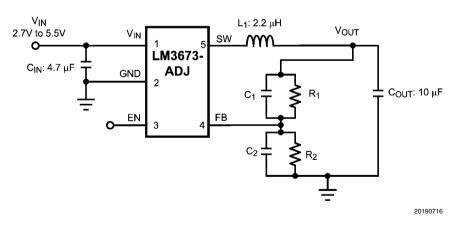


FIGURE 2. Typical Application Circuit: Adjustable Voltage Option

Output Voltage Selection for LM3673MF-ADJ

The output voltage of the adjustable parts can be programmed through the resistor network connected from V_{OUT} to FB to GND. The resistor from FB to GND (R₂) should be 200k Ω to keep the current drawn through this network small, but large enough that it is not susceptible to noise. If R₂ is 200k Ω , and given the V_{FB} is 0.5V, then the current through the resistor feedback network will be 2.5µA. The output voltage formula is:

$$V_{OUT} = V_{FB} \left(\frac{R_1}{R_2} + 1 \right)$$

V_{OUT}: output voltage (V)

V_{FB}: feedback voltage (0.5V typical)

 $\textbf{R}_{1}\text{:}$ feedback resistor from \textbf{V}_{OUT} to $\textbf{FB}(\Omega$)

 R_2 : feedback resistor from FB to GND (Ω)

For the fixed output voltage parts the feedback resistors are internal. Place a 0Ω resistor for $R_1.$

The bypass capacitors C_1 and C_2 (labeled C_3 and C_4 on Evaluation Board) in parallel with the feedback resistors are chosen for stable operation. Below are the formulas for C_1 and C_2 .

$$C_1 = \frac{1}{2 x \pi x R_1 x 45 \text{ kHz}}$$

$$C_2 = \frac{1}{2 \times \pi \times R_2 \times 45 \text{ kHz}}$$

V _{OUT} (V)	R ₁ (kΩ)	$R_2(k\Omega)$	C ₁ (pF)	C ₂ (pF)	L (µH)	C _{IN} (μF)	C _{ΟUT} (μF)
1.0	200	200	18	None	2.2	4.7	10
1.1	191	158	18	None	2.2	4.7	10
1.2	280	200	12	None	2.2	4.7	10
1.5	357	178	10	None	2.2	4.7	10
1.6	442	200	8.2	None	2.2	4.7	10
1.7	432	178	8.2	None	2.2	4.7	10
1.8	464	178	8.2	None	2.2	4.7	10
1.875	523	191	6.8	None	2.2	4.7	10
2.5	402	100	8.2	None	2.2	4.7	10
2.8	464	100	8.2	33	2.2	4.7	10
3.3	562	100	6.8	33	2.2	4.7	10

TABLE 1. LM3673-ADJ Configurations for Various V_{out} (Circuit of Figure 2)

Powering the LM3673 for Bench Measurements

When powering the LM3673 with a bench power supply, it is recommended to place a 100μ F tantalum capacitor across the VIN and GND supply terminals of the bench power supply. This capacitor will reduce the input spike caused by the power

supply and long power cables. The combination of the power supply and inductance within the power cables produce a large voltage spike that may damage the device. In addition, consideration must also be looked at the enable pin of the device. The enable should never be taken high, until minimum guaranteed operating voltage of 2.7V is reached. The enable pin should also never exceed the input voltage.

AN-1465

Connection Diagram and Package Mark Information

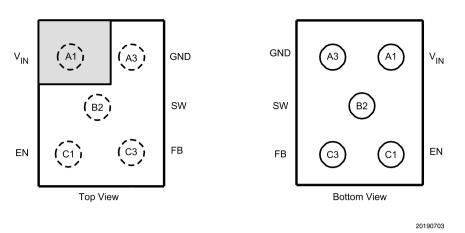
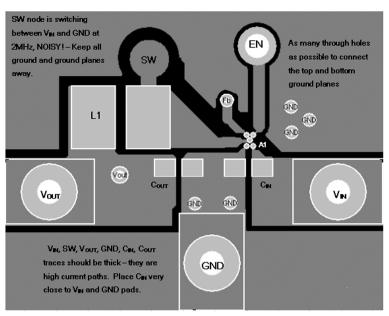



FIGURE 3. 5-bump Micro SMD Package Number TLA05CBA

Pin Descriptions (5-bump Micro SMD)

Pin#	Name	Description		
1	V _{IN}	Power supply input. Connect to the input filter capacitor (Figure 1)		
2	GND	Ground pin		
3	EN	Enable input. The device is in shutdown mode when voltage to this pin is < 0.4V and enabled when > 1.0V. Do not leave this pin floating.		
4	FB	Feedback analog input. Connect directly to the output filter capacitor for fixed voltage versions. For adjustable version external resistor dividers are required (Figure 2). The internal resistor dividers are disabled for the adjustable version.		
5	SW	Switching node connection to the internal PFET switch and NFET synchronous rectifier.		

Evaluation Board Layout

20190721

FIGURE 4. Top Layer (5-bump Micro SMD)

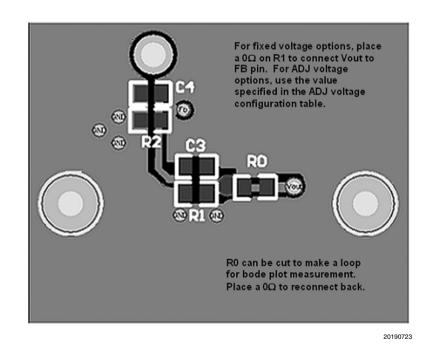


FIGURE 5. Bottom Layer (5-bump Micro SMD)

AN-1465

BOM For Common Configurations

	Manufacture	Manufacture #	Description	
LM3673TL - 1.5V FIXED		•		
C1 (input C)	TDK	C2012XR0J475K	4.7 μF, 6.3V, 0805, 10%	
C2 (output C)	ТDК	C2012X5R0J106K	10 μF, 6.3V, 0805, 10%	
L1 (inductor)	Coilcraft	DO3314-222MX	2.2 µH inductor, 1.6A sat	
R1 (V_{OUT} to V_{FB})	Vishay	CRCW06030R00F	0Ω, 0603, 1%	
R2 (V _{FB} to GND)	None			
C3 (V _{OUT} to V _{FB})	None			
C4 (V _{FB} to GND)	None			
LM3673TL - 3.3V ADJUST	ABLE	•	-	
C1 (input C)	TDK	C2012XR0J475K	4.7 μF, 6.3V, 0805, 10%	
C2 (output C)	ТDК	C2012X5R0J106K	10 μF, 6.3V, 0805, 10%	
L1 (inductor)	Coilcraft	DO3314-222MX	2.2 μH inductor, 1.6A sat	
R1 (V _{OUT} to V _{FB})	Vishay	CRCW06034643F	562kΩ, 0603, 1%	
R2 (V _{FB} to GND)	Vishay	CRCW06031783F	100kΩ, 0603, 1%	
C3 (V _{OUT} to V _{FB})	Vishay	VJ0603A8R2KXAA	8.2pF, 0603, 10%	
C4 (V _{FB} to GND)	Vishay	VJ0603A8R2KXAA	33pF , 0603, 10%	
COMMON TO ALL		•		
V _{IN} banana jack - red	Johnson Components	108-0902-001	connector, insulated banana jack (red)	
V _{OUT} banana jack - yellow	Johnson Components	108-0907-001	connector, insulated banana jack (yellow)	
GND banana jack - black	Johnson Components	108-0903-001	connector, insulated banana jack (black)	
Post for EN	Turrent	1573-2	Upright post from eval board	
Post for V _{IN}	Turrent	1502-2	Upright post from eval board	
Post for V _{OUT}	Turrent	1502-2	Upright post from eval boardt	
Post for GND	Turrent	1502-2	Upright post from eval board	

Notes

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench	
Audio	www.national.com/audio	Analog University	www.national.com/AU	
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes	
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts	
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green	
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging	
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality	
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns	
Power Management	www.national.com/power	Feedback	www.national.com/feedback	
Switching Regulators	www.national.com/switchers			
LDOs	www.national.com/ldo			
LED Lighting	www.national.com/led			
PowerWise	www.national.com/powerwise			
Serial Digital Interface (SDI)	www.national.com/sdi			
Temperature Sensors	www.national.com/tempsensors			
Wireless (PLL/VCO)	www.national.com/wireless			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

0

AN-1465

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com